Library SSProve.Mon.SPropBase
(*From Coq Require Export Logic.StrictProp.*)
(*This file was originally referring to SProp. Not anymore*)
From SSProve.Mon Require Import Base.
From mathcomp Require Import ssreflect.
From Coq Require ClassicalFacts.
Axiom ax_proof_irrel : ClassicalFacts.proof_irrelevance.
Set Primitive Projections.
Module Redefined_sprop_constructs.
Record Box (A:Prop) : Prop := box { unbox : A }.
End Redefined_sprop_constructs.
Export Redefined_sprop_constructs.
(*This file was originally referring to SProp. Not anymore*)
From SSProve.Mon Require Import Base.
From mathcomp Require Import ssreflect.
From Coq Require ClassicalFacts.
Axiom ax_proof_irrel : ClassicalFacts.proof_irrelevance.
Set Primitive Projections.
Module Redefined_sprop_constructs.
Record Box (A:Prop) : Prop := box { unbox : A }.
End Redefined_sprop_constructs.
Export Redefined_sprop_constructs.
Conjunction
Definition sand := and.
Module SPropNotations.
Notation "⦑ t ⦒" := (exist _ t _).
Notation " x ∙1" := (proj1_sig x) (at level 2).
Notation " x ∙2" := (proj2_sig x) (at level 2).
End SPropNotations.
Section sigLemmas.
Lemma sig_eq {A} (P : A → Prop) :
∀ (mx my : sig P), proj1_sig mx = proj1_sig my → mx = my.
Proof.
intros [cx ex] [cy ey]. simpl.
induction 1.
have hintUnif : ex = ey.
by apply ax_proof_irrel.
rewrite hintUnif. reflexivity.
Defined.
Lemma transport_sig :
∀ {A B} (F : B → A → Prop) {x y} h z,
eq_rect x (fun x ⇒ sig (fun b ⇒ F b x)) z y h
= exist _ (proj1_sig z) (@eq_ind A x (F (proj1_sig z)) (proj2_sig z) y h).
Proof.
intros.
dependent inversion h. compute. destruct z. reflexivity.
Qed.
Lemma eq_above_sig {A B} (F : B → A → Prop)
(G := fun x ⇒ sig (fun b ⇒ F b x)) {x1 x2 : A} {h : x1 = x2}
{z1 : G x1} {z2 : G x2} :
proj1_sig z1 = proj1_sig z2 → z1 =⟨ h ⟩ z2.
Proof.
intro Hz.
unfold eq_above.
unfold G.
rewrite (transport_sig F h z1).
apply sig_eq.
assumption.
Qed.
End sigLemmas.
Module SPropAxioms.
Import SPropNotations.
Axiom sprop_ext : ∀ {p q : Prop}, p = q ↔ Box (sand (p → q) (q → p)).
End SPropAxioms.
Module SPropNotations.
Notation "⦑ t ⦒" := (exist _ t _).
Notation " x ∙1" := (proj1_sig x) (at level 2).
Notation " x ∙2" := (proj2_sig x) (at level 2).
End SPropNotations.
Section sigLemmas.
Lemma sig_eq {A} (P : A → Prop) :
∀ (mx my : sig P), proj1_sig mx = proj1_sig my → mx = my.
Proof.
intros [cx ex] [cy ey]. simpl.
induction 1.
have hintUnif : ex = ey.
by apply ax_proof_irrel.
rewrite hintUnif. reflexivity.
Defined.
Lemma transport_sig :
∀ {A B} (F : B → A → Prop) {x y} h z,
eq_rect x (fun x ⇒ sig (fun b ⇒ F b x)) z y h
= exist _ (proj1_sig z) (@eq_ind A x (F (proj1_sig z)) (proj2_sig z) y h).
Proof.
intros.
dependent inversion h. compute. destruct z. reflexivity.
Qed.
Lemma eq_above_sig {A B} (F : B → A → Prop)
(G := fun x ⇒ sig (fun b ⇒ F b x)) {x1 x2 : A} {h : x1 = x2}
{z1 : G x1} {z2 : G x2} :
proj1_sig z1 = proj1_sig z2 → z1 =⟨ h ⟩ z2.
Proof.
intro Hz.
unfold eq_above.
unfold G.
rewrite (transport_sig F h z1).
apply sig_eq.
assumption.
Qed.
End sigLemmas.
Module SPropAxioms.
Import SPropNotations.
Axiom sprop_ext : ∀ {p q : Prop}, p = q ↔ Box (sand (p → q) (q → p)).
End SPropAxioms.